34k^2-24k=3

Simple and best practice solution for 34k^2-24k=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 34k^2-24k=3 equation:


Simplifying
34k2 + -24k = 3

Reorder the terms:
-24k + 34k2 = 3

Solving
-24k + 34k2 = 3

Solving for variable 'k'.

Reorder the terms:
-3 + -24k + 34k2 = 3 + -3

Combine like terms: 3 + -3 = 0
-3 + -24k + 34k2 = 0

Begin completing the square.  Divide all terms by
34 the coefficient of the squared term: 

Divide each side by '34'.
-0.08823529412 + -0.7058823529k + k2 = 0

Move the constant term to the right:

Add '0.08823529412' to each side of the equation.
-0.08823529412 + -0.7058823529k + 0.08823529412 + k2 = 0 + 0.08823529412

Reorder the terms:
-0.08823529412 + 0.08823529412 + -0.7058823529k + k2 = 0 + 0.08823529412

Combine like terms: -0.08823529412 + 0.08823529412 = 0.00000000000
0.00000000000 + -0.7058823529k + k2 = 0 + 0.08823529412
-0.7058823529k + k2 = 0 + 0.08823529412

Combine like terms: 0 + 0.08823529412 = 0.08823529412
-0.7058823529k + k2 = 0.08823529412

The k term is -0.7058823529k.  Take half its coefficient (-0.3529411765).
Square it (0.1245674741) and add it to both sides.

Add '0.1245674741' to each side of the equation.
-0.7058823529k + 0.1245674741 + k2 = 0.08823529412 + 0.1245674741

Reorder the terms:
0.1245674741 + -0.7058823529k + k2 = 0.08823529412 + 0.1245674741

Combine like terms: 0.08823529412 + 0.1245674741 = 0.21280276822
0.1245674741 + -0.7058823529k + k2 = 0.21280276822

Factor a perfect square on the left side:
(k + -0.3529411765)(k + -0.3529411765) = 0.21280276822

Calculate the square root of the right side: 0.461305504

Break this problem into two subproblems by setting 
(k + -0.3529411765) equal to 0.461305504 and -0.461305504.

Subproblem 1

k + -0.3529411765 = 0.461305504 Simplifying k + -0.3529411765 = 0.461305504 Reorder the terms: -0.3529411765 + k = 0.461305504 Solving -0.3529411765 + k = 0.461305504 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.3529411765' to each side of the equation. -0.3529411765 + 0.3529411765 + k = 0.461305504 + 0.3529411765 Combine like terms: -0.3529411765 + 0.3529411765 = 0.0000000000 0.0000000000 + k = 0.461305504 + 0.3529411765 k = 0.461305504 + 0.3529411765 Combine like terms: 0.461305504 + 0.3529411765 = 0.8142466805 k = 0.8142466805 Simplifying k = 0.8142466805

Subproblem 2

k + -0.3529411765 = -0.461305504 Simplifying k + -0.3529411765 = -0.461305504 Reorder the terms: -0.3529411765 + k = -0.461305504 Solving -0.3529411765 + k = -0.461305504 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.3529411765' to each side of the equation. -0.3529411765 + 0.3529411765 + k = -0.461305504 + 0.3529411765 Combine like terms: -0.3529411765 + 0.3529411765 = 0.0000000000 0.0000000000 + k = -0.461305504 + 0.3529411765 k = -0.461305504 + 0.3529411765 Combine like terms: -0.461305504 + 0.3529411765 = -0.1083643275 k = -0.1083643275 Simplifying k = -0.1083643275

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.8142466805, -0.1083643275}

See similar equations:

| 9+6x=33+3x | | 11x+18=-x-6 | | 2a-a-7= | | iz^2+(1+i)z-7+4i=0 | | y^3-3y^2-6y+8=0 | | 7(3x)+5x-8=11 | | 3*x^3+18*x^2=0 | | 2x*2x-x-3=0 | | x^3-7x^2+3x-9=0 | | 9x^2+54x=4 | | -8-y=22 | | 5(2y+3)= | | 4(a+2)= | | x^4-8x^2+17=0 | | 3(x+1)=x+5 | | 23+8b= | | 5x^2-15x-12=0 | | 8t+3=51 | | 6k+3=33 | | 3q-6+2=5q-7-2q | | 1r-4=7r+12 | | 5(m+6)+10=3(m+2)+20 | | -3x+11=x+27 | | 4(2x-5)=3x-30 | | 40=5(2x-1)-5 | | x-19=4(5x+3)+7 | | -2=4(x-3)-6 | | b^2+3b+6b+18= | | 38=2(3x-5) | | -5x+1=4(4x-5) | | 6x^2-16x+10=0 | | x(x+1)=34 |

Equations solver categories